28-31 BCAB
22.参考答案解:(1)f(x)=rsin rcoS xf'(x)=-(sin x xcos x)cos x-(-xsin x)-sin x)sin xcos x x2x 2x(2分)cos xcOS2"xsin2x 2x≥-1 2x>0,∴f"(x)<0,f(x)单调递减.(3分)xsin x2√33∵x=时a的取值范围是.(5分)3coS x3 、x3兀coS x4(2)g(x)=(a 1)cos x-( cos x-xsinx= acos x sinx, u (x)=g(x), DWu(x)=-asinx sin x xcos x= xcos x-(a-1)sinx, (655当x日买,江时,x(x)<0,g(x)单调递减又812/=2>0,g()=-<0,由零点存在性定理知必存在唯一=(2满足g(x)=0,(7分)当、(,户,8(x)>0,即g(x)单调递增,当x∈(xn,)时,g(x)<0,即g(x)单调递减.(8分)由asx ximx=0,得a÷、sy0coS1G(a)=g(x)m=g(xo)=(a 1)sirw-xocos x=1-o sin -xosin xo-x cos xo sIn XocoS Yo由(1)知函数f(x)在,兀上单调递减,即当ae3x23兀(9分)4334cos x-x(-sin x)cos x(-sin2'x)xsin x_-sin x(sin 2x 2x)设H(x)x∈H(x=cos xcos x2cos-xcos xcos x32故H(x)单调递减,H(x)m=H兀.(11分)综上,函数g(x)的最大值G(a)的最小值是 兀(12分)
以上就是2022英语周报第八期七年级答案,更多英语周报答案请关注本网站。