19.【考查目标】必备知识:本题主要考查空间中点、线、面位置关系直三祾柱的性质等知识.关键能力:通过几何体体积的求解和线线垂直的证明考查逻辑思维能力、运算求解能力、空间想象能力.学科素养:理性思维、数学应用、数学探索【解题思路】(1)取BC的中点M,连接EM,由三角形中位线性质结合BF⊥A1B1推出BF⊥EM,进而推出EM⊥平面BCF,将求三棱锥F-EBC的体积转化为求三棱锥E-FBC的体积,再利用三棱锥的体积公式求解即可;(2)要证明线线垂直只需证明其中一条直线垂直于另一条直线所在的平面,连接A1E,B1M,证明BF⊥平面EMB1A1即可证得结果解:(1)如图,取BC的中点为M,连接EM由已知可得EM∥AB,AB=BC=2,CF=1,EM=AB=1,AB∥A1B1,由BF⊥A1B1得EM⊥BF又EM⊥CF,BF∩CF=F所以EM⊥平面BCF,故V三棱锥FEBC=V三E-FBC=CFxEMExxxI=(2)连接A1E,B1M,由(1)知EM∥A1B1,所以ED在平面EMB1A1内在正方形CC1B1B中,由于F,M分别是C1,BC的中点,所以由平面几何知识可得BF⊥B1M,又BF⊥A1B1,B1M∩AB1=B1,所以BF⊥平面EMB1A1,又DEC平面EMB1A1,所以BF⊥DE【规律总结】(1)三棱锥体积计算一般都要用等体积法,本题通过转换三棱锥的顶点将求解三棱锥F-EBC的体积转化为求解三棱锥E-FBC的体积.(2)证明线线垂直的思路:可通过证明其中一条直线垂直于另一条直线所在的平面,即证线面垂直,要证明线面垂直可通过证明直线与平面内的两条相交直线垂直
20.BDPQ两点处弹簧弹力的大小相等,则由胡克定律可知P点的压缩量等于Q点的伸长量,由几何关系知PQ=dm3-3d,则小球位于P点时弹簧的压缩量为x=PQ=3对P点的小球由力的平衡条件可知mg=k,.解得k,选项A错误;当小球运动到P点时,假设小球甲的速度为v,此时物体乙的速度为零,又小球、物体和弹簧组成的系统机械能守恒则由机械能守恒定律得切g(=-0-mm53=m,解得=√÷m,选项B正确;小球由P到Q的过程弹簧的弹性势能先减小后增大,则小球甲和物体乙的机械能之和先增大后减小,选项D正确;由于小球在P和Q点处,物体乙的速度都为零,则物体乙重力的瞬时功率先增大后减小,选项C错误
以上就是英语周报七年级下册35欺答案,更多英语周报答案请关注本网站。